Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(4): 34, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648039

RESUMO

Purpose: The purpose of this study was to determine if levels of the HtrA1 protein in serum or vitreous humor are influenced by genetic risk for age-related macular degeneration (AMD) at the 10q26 locus, age, sex, AMD status, and/or AMD disease severity, and, therefore, to determine the contribution of systemic and ocular HtrA1 to the AMD disease process. Methods: A custom-made sandwich ELISA assay (SCTM ELISA) for detection of the HtrA1 protein was designed and compared with three commercial assays (R&D Systems, MyBiosource 1 and MyBiosource 2) using 65 serum samples. Concentrations of HtrA1 were thereafter determined in serum and vitreous samples collected from 248 individuals and 145 human donor eyes, respectively. Results: The SCTM ELISA demonstrated high specificity, good recovery, and parallelism within its linear detection range and performed comparably to the R&D Systems assay. In contrast, we were unable to demonstrate the specificity of the two assays from MyBioSource using either recombinant or native HtrA1. Analyses of concentrations obtained using the validated SCTM assay revealed that genetic risk at the 10q26 locus, age, sex, or AMD status are not significantly associated with altered levels of the HtrA1 protein in serum or in vitreous humor (P > 0.05). Conclusions: HtrA1 levels in serum and vitreous do not reflect the risk for AMD associated with the 10q26 locus or disease status. Localized alteration in HTRA1 expression in the retinal pigment epithelium, rather than systemic changes in HtrA1, is the most likely driver of elevated risk for developing AMD among individuals with risk variants at the 10q26 locus.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Degeneração Macular , Serina Endopeptidases , Corpo Vítreo , Idoso , Feminino , Humanos , Masculino , Cromossomos Humanos Par 10/genética , Ensaio de Imunoadsorção Enzimática/métodos , Predisposição Genética para Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A/sangue , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/diagnóstico , Fatores de Risco , Sensibilidade e Especificidade , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Corpo Vítreo/metabolismo
2.
Ophthalmol Retina ; 6(8): 723-731, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35307605

RESUMO

OBJECTIVE: West African crystalline maculopathy (WACM) is characterized by the presence of macular hyperrefractile crystal-like deposits. Although the underlying pathophysiology has not been elucidated, a few biologic drivers have been proposed. We analyzed a large WACM case series to gain a more robust understanding of its features and etiology. DESIGN: Prospective, cross-sectional cohort study. SUBJECTS: Participants with WACM were selected from the large cohort recruited in the Ghana Age-Related Macular Degeneration Study. METHODS: Demographic and detailed medical histories, full ophthalmic examinations, digital color fundus photographs, and OCT images were obtained. All cases with WACM were evaluated by 3 retina experts. Crystal numbers, location, and distribution were determined. Associations between WACM and White age-related macular degeneration (AMD) risk variants were assessed using Firth's bias-reduced logistic regression, including age and sex as covariates. MAIN OUTCOME MEASURES: Phenotypic features of, and genetic associations with, WACM. RESULTS: West African crystalline maculopathy was identified in 106 eyes of 53 participants: 22 were bilateral and 24 were unilateral. Grading for AMD was not possible in 1 eye in 7 participants with WACM; therefore, laterality was not assessed in these subjects. Thirty-eight participants were women and were 14 men; sex was unrecorded for 1 participant. The mean age was 68.4 years (range, 45-101 years). Typical WACM crystals were demonstrated on OCT, which were more easily identified at high contrast and predominantly located at the inner limiting membrane. In eyes with copathology, crystals localized deeper in the inner retina, with wider retinal distribution over copathology lesions. There was no association with age or sex. A significant association was observed between the complement factor H (CFH) 402H risk variant and WACM. CONCLUSIONS: This study confirms the localization of crystals adjacent to the inner limiting membrane and distribution over lesions in eyes with copathology. The evaluation of OCT images under high contrast allows improved identification. West African crystalline maculopathy may be associated with the CFH-CFHR5 AMD risk locus identified among Whites; however, it is also possible that the combination of crystals and the CFH 402H allele increases the risk for developing late AMD. Further analyses using larger sample sizes are warranted to identify causalities between genotype and WACM phenotype.


Assuntos
Degeneração Macular , Distrofias Retinianas , Estudos Transversais , Feminino , Gana/epidemiologia , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/epidemiologia , Degeneração Macular/genética , Masculino , Estudos Prospectivos
3.
Hum Genomics ; 15(1): 60, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563268

RESUMO

BACKGROUND: Single-variant associations with age-related macular degeneration (AMD), one of the most prevalent causes of irreversible vision loss worldwide, have been studied extensively. However, because of a lack of refinement of these associations, there remains considerable ambiguity regarding what constitutes genetic risk and/or protection for this disease, and how genetic combinations affect this risk. In this study, we consider the two most common and strongly AMD-associated loci, the CFH-CFHR5 region on chromosome 1q32 (Chr1 locus) and ARMS2/HTRA1 gene on chromosome 10q26  (Chr10 locus). RESULTS: By refining associations within the CFH-CFHR5 locus, we show that all genetic protection against the development of AMD in this region is described by the combination of the amino acid-altering variant CFH I62V (rs800292) and genetic deletion of CFHR3/1. Haplotypes based on CFH I62V, a CFHR3/1 deletion tagging SNP and the risk variant CFH Y402H are associated with either risk, protection or neutrality for AMD and capture more than 99% of control- and case-associated chromosomes. We find that genetic combinations of CFH-CFHR5 haplotypes (diplotypes) strongly influence AMD susceptibility and that individuals with risk/protective diplotypes are substantially protected against the development of disease. Finally, we demonstrate that AMD risk in the ARMS2/HTRA1 locus is also mitigated by combinations of CFH-CFHR5 haplotypes, with Chr10 risk variants essentially neutralized by protective CFH-CFHR5 haplotypes. CONCLUSIONS: Our study highlights the importance of considering protective CFH-CFHR5 haplotypes when assessing genetic susceptibility for AMD. It establishes a framework that describes the full spectrum of AMD susceptibility using an optimal set of single-nucleotide polymorphisms with known functional consequences. It also indicates that protective or preventive complement-directed therapies targeting AMD driven by CFH-CFHR5 risk haplotypes may also be effective when AMD is driven by ARMS2/HTRA1 risk variants.


Assuntos
Proteínas do Sistema Complemento/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/genética , Proteínas/genética , Idoso , Cromossomos/genética , Fator H do Complemento/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Degeneração Macular/patologia , Masculino , Polimorfismo de Nucleotídeo Único/genética
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301870

RESUMO

Genome-wide association studies have identified the chromosome 10q26 (Chr10) locus, which contains the age-related maculopathy susceptibility 2 (ARMS2) and high temperature requirement A serine peptidase 1 (HTRA1) genes, as the strongest genetic risk factor for age-related macular degeneration (AMD) [L.G. Fritsche et al., Annu. Rev. Genomics Hum. Genet. 15, 151-171, (2014)]. To date, it has been difficult to assign causality to any specific single nucleotide polymorphism (SNP), haplotype, or gene within this region because of high linkage disequilibrium among the disease-associated variants [J. Jakobsdottir et al. Am. J. Hum. Genet. 77, 389-407 (2005); A. Rivera et al. Hum. Mol. Genet. 14, 3227-3236 (2005)]. Here, we show that HTRA1 messenger RNA (mRNA) is reduced in retinal pigment epithelium (RPE) but not in neural retina or choroid tissues derived from human donors with homozygous risk at the 10q26 locus. This tissue-specific decrease is mediated by the presence of a noncoding, cis-regulatory element overlapping the ARMS2 intron, which contains a potential Lhx2 transcription factor binding site that is disrupted by risk variant rs36212733. HtrA1 protein increases with age in the RPE-Bruch's membrane (BM) interface in Chr10 nonrisk donors but fails to increase in donors with homozygous risk at the 10q26 locus. We propose that HtrA1, an extracellular chaperone and serine protease, functions to maintain the optimal integrity of the RPE-BM interface during the aging process and that reduced expression of HTRA1 mRNA and protein in Chr10 risk donors impairs this protective function, leading to increased risk of AMD pathogenesis. HtrA1 augmentation, not inhibition, in high-risk patients should be considered as a potential therapy for AMD.


Assuntos
Predisposição Genética para Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Corioide/metabolismo , Variação Genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Desequilíbrio de Ligação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/metabolismo
5.
Epilepsia ; 50(7): 1752-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19453707

RESUMO

PURPOSE: Benign familial neonatal convulsions (BFNC) is caused by mutations in the KCNQ2 and KCNQ3 genes, which encode subunits of the M-type potassium channel. The purpose of this study was to examine the effects of orthologous BFNC-causing mutations on seizure thresholds and the acquisition of corneal kindling in mice with heterozygous expression of the mutations. METHODS: The effects of the Kcnq2 gene A306T mutation and the Kcnq3 gene G311V mutation were determined for minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizures. The rate of corneal kindling acquisition was also determined for Kcnq2 A306T and Kcnq3 G311V mice. RESULTS: Seizure thresholds were significantly altered relative to wild-type animals in the minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizure models. Differences in seizure threshold were found to be dependent on the mutation expressed, the seizure testing paradigm, the genetic background strain, and the gender of the animal. Mutations in Kcnq2 and Kcnq3 were associated with an increased rate of corneal kindling. In the Kcnq2 A306T mice, an increased incidence of death occurred during and immediately following the conclusion of the kindling acquisition period. CONCLUSIONS: These results suggest that genetic alterations in the subunits that underlie the M-current and cause BFNC alter seizure susceptibility in a sex-, mouse strain-, and seizure-test dependent manner. Although the heterozygous mice do not appear to have spontaneous seizures, the increased seizure susceptibility and incidence of death during and after kindling suggests that these mutations lead to altered excitability in these animals.


Assuntos
Epilepsia Neonatal Benigna/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Excitação Neurológica/fisiologia , Mutação/genética , Convulsões/genética , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Eletrocardiografia , Epilepsia Neonatal Benigna/fisiopatologia , Feminino , Técnicas de Introdução de Genes/métodos , Predisposição Genética para Doença , Heterozigoto , Humanos , Canal de Potássio KCNQ2/fisiologia , Canal de Potássio KCNQ3/fisiologia , Excitação Neurológica/genética , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Convulsões/fisiopatologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...